Equation solvers, tolerances and algorithms.
solvers { // specify the linear solver.
p ICCG 1e-06 0; // Incomplete-Cholesky preconditioned conjugate gradient for symmetric sparse matrices.
p DCG 1e-06 0; // Diagonally preconditioned conjugate gradient for symmetric sparse matrices.
p AMG 1e-06 0 100; // Algebraic multi-grid for symmetric sparse matrices.
U BICCG 1e-05 0; // Incomplete-Cholesky preconditioned biconjugate gradient for asymmetric sparse matrices.
U BDCG 1e-05 0; // Diagonally preconditioned biconjugate gradient for asymmetric sparse matrices.
U BICCG 1e-05 0 2; // Gauss-Seidel for asymmetric sparse matrices.
U { solver smoothSolver; smoother GaussSeidel; tolerance 1e-06; relTol 0.01; nSweeps 1; maxIter 100; }
k BICCG 1e-05 0.1;
epsilon BICCG 1e-05 0.1;
epsilon{solver PBiCG; preconditioner DILU; tolerance 1E-9; relTol 0;}
nuTilda BICCG 1e-05 0.1;
R{solver PBiCG; preconditioner DILU; tolerance 1E-9; relTol 0;}
}
Solution stops when tol or relTol are reached. The tolerance is the difference between the lhs and rhs of the equation being solved.
is often 0.
AMG: Quick solution on coarse mesh; map results; second solution on fine mesh.
relaxationFactors {
p 0.3;
U 0.7;
k 0.7;
epsilon 0.7;
R 0.7;
nuTilda 0.7;
}
// ---------------------
PISO { // Pressure Implicit Split Operator
nCorrectors 2;
nNonOrthogonalCorrectors 0;
}
OR
SIMPLE { // Semi-implicit method for pressure-linked equations.
nNonOrthogonalCorrectors 0; // I've have best residuals with 1 with structured 2D mesh; blow with 2; good with 3, 4, 5.
}
SIMPLE makes one correction to an initial solution; PISO requires more but usually < 4.
This sets nCorrectors. nNonOrthogonalCorrectors is used to compensate for a face not
being normal to the cell centre.
// ---------------------------
Wednesday, 30 May 2012
system/fvSolution
From http://www.foamcfd.org/Nabla/guides/UserGuidese15.html
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment